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Abstract -_ _ _)'

The presence of multiple scientific
instruments aboard the Hubble Space
Telescope provides opportunities for
parallel science, i.e., the simultaneous
use of different instruments for different

observations. Determining whether
candidate observations are suitable for

parallel execution depends on numerous
criteria (some involving quantitative
tradeoffs) that may change frequently.
This paper presents a knowledge based
approach for constructing a scoring
function to rank candidate pairs of
observations for parallel science. In the
Parallel Observation Matching System
(POMS), spacecraft knowledge and
schedulers' preferences are represented
using a uniform set of mappings, or
knowledge functions. Assessment of
parallel science opportunities is achieved
via composition of the knowledge
functions in a prescribed manner. The
knowledge representation, knowledge
acquisition, and explanation facilities of
the system are presented. The
methodology is applicable to many
other multiple-criteria assessment
problems.

I. Introduction

Despite a well-known manufacturing flaw
in its primary mirror, NASA's orbiting
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Hubble Space Telescope (HST) has
produced images of unprecedented clarity
since its launch in 1990 [Kin91]. Repair
of the telescope's ability to resolve very

faint objects is planned during a
maintenance mission in 1993, and
demands for observation time on the HST

have remained high.

In order to maximize the efficient use of

observation time, the Space Telescope
Science Institute (STScI) has promoted
the research and development of
advanced methods for scheduling
astronomical observations. Two software

systems -- Spike and Transformation --
developed at STScI have applied
artificial intelligence techniques toward
this end. Transformation [Ger91] is a

planning system for the grouping and
ordering of observation tasks.
Transformation converts observers'

requests for spacecraft activities into
hierarchical structures called scheduling
units (SUs) containing multiple
sequential tasks that may be subsequently
treated as indivisible entities for

scheduling purposes. Spike [Mil91,
Joh90a, Mi188] is a knowledge-based
system for long-range scheduling. Using
suitability functions [Joh90b] to represent
scheduling constraints and preferences,
Spike determines week-long segments
into which each SU may be scheduled.
The output of Spike is later refined into a
second-by-second calendar using the
Science Planning Scheduling System
(SPSS) [Tay91].

The presence of six scientific instruments
aboard the HST provides opportunities
for parallel science, i.e., the simultaneous
use of different instruments to observe

different targets. By overlapping multiple
observations, this concept clearly has the
potential to increase throughput. Parallel
science is particularly useful for schedul-
ing important exploratory surveys.
Without it, such explorations consume
considerable resources at the expense of
many other shorter and more specific ob-
servations. If executed in parallel with
other pre-scheduled activities, however,
such endeavors may be undertaken at
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opportune times without excessive re-
source consumption. The parallel science
effort at STScI has been a substantial un-

dertaking, involving major extensions to
several existing software systems, includ-
ing Spike, Transformation, and SPSS.

To utilize parallel science, an observer
must specifically request that an
observation is to be conducted in parallel.
It is then the responsibility of schedulers
at STScI to find a corresponding non-
parallel (or primary) observation
somewhere on the HST calendar with

which the parallel task may be matched.
The large number of observations (on the

order of 10 4 primaries and 10 3 .parallels)
and the wide diversity m their
requirements makes this a formidable
task. This paper describes the Parallel
Observation Matching System (POMS),
a knowledge-based advisory system
embedded into Spike that assists
schedulers in finding such matches
between primaries and parallels. For each
primary SU scheduled by Spike, POMS
ranks available parallel SUs according to
their compatibility with the requirements
of the primary.

Although compatibility between a primary
and a parallel depends on certain obvious
factors such as instrument constraints

(e.g., both tasks must not require the use
of the same instrument) and pointing
similarity (the two targets must be
sufficiently close), it also involves many
other more subtle criteria, some of which
are quantitative in nature and introduce
tradeoffs into the assessment. The

advisory system must be able to represent
and aggregate the effects of such criteria.

Another salient characteristic of the

problem is that the match assessment
criteria are likely to be vague, particularly
in the early stages of the parallel science
project, since parallel scheduling policies
have not been firmly established and the
full effects of the criteria are not yet well
understood. Hence, knowledge is likely
to be tentative, incomplete, and subject to
frequent change. Ease of incremental

extension and modification of the

knowledge base is therefore crucial to the
success of the system.

The knowledge representation scheme
used in POMS permits the construction of
a scoring function for ranking primary-
parallel matches. The scoring function is
built from modular units of knowledge
about individual criteria and from a

modifiable aggregation formula that is an
explicit part of the knowledge base. The
approach has been used previously in a
very different application, i.e., a
prototype advisory system for selecting
mathematical software from numerical

subroutine libraries [Luc92]. POMS is
the first production level application of
the technology. The approach extends
existing representation media in its
capabilities to express quantitative
tradeoffs and complex interactions among
multiple criteria [Luc90], while retaining
the traditional advantages of expert
systems for incremental modification and
explanation.

POMS is implemented in the Common
Lisp Object System (CLOS)
programming language.

The remainder of the paper is organized
as follows. Section 2 describes the

architecture and high-level functionalities
of the system. Section 3 introduces some
terminology and notation required to
describe the knowledge representation.
The assessment criteria are described in

Section 4. The knowledge representation,
explanation, and knowledge acquisition
facilities are presented in sections 5, 6,
and 7, respectively. In section 8 we
discuss the preliminary results of the
POMS project.

2. System Overview

The architecture of POMS is depicted in
Figure 1. The three major components of
the system are: (1) the parallel database,
(2) the parallel knowledge base, and (3)
the parallel rnatcher.
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Figure 1. Architecture of POMS

The parallel database is a relational
database that stores descriptive
information about each primary and
parallel (e.g., pointing, instrument, and
timing requirements). This information is
accessible to the marcher when needed at
run time.

The parallel knowledge base contains the
assessment criteria used to evaluate the

compatibility between primaries and
parallels. The knowledge base was
initially constructed by the POMS
developers (with input from systems
engineers), however it may be modified
by users (schedulers).

The parallel matcher is the POMS control
mechanism. The matcher is invoked after

the primaries have been scheduled by
Spike to week-long segments, but before
these primaries are delivered to SPSS for
short-term scheduling refinement. The
matcher evaluates the compatibility of
each scheduled primary with each
available parallel in the database, based
on the descriptions of the SUs contained
in the database and the scheduling
knowledge/preferences contained in the
knowledge base. Each primary-parallel
pair is assigned a score, and the highest
ranked matches for each primary are
delivered to SPSS.

Upon request, the matcher also generates
explanations of its advice for inspection
by users and knowledge engineers.

3. Terminology and notation

The following notation and terminology
are used in the subsequent description of
POMS.

P is a set of primaries that have been
scheduled for a specific week by Spike.

p is a primary SU in P.

Q is a set of parallel SUs to be matched
with P.

q is a parallel SU in Q.

R = {rl, r2 .... rk} is a set of properties

that characterize primaries and/or parallels
(target, time duration, instrument, etc.).
Properties may be viewed as functions on
PuQ eg.:

if rl = "primary-target", rl(p) returns a
list of two elements containing the
celestial longitude and latitude of the
primary's target;

if r2 = "parallel-instrument", r2(q)
returns the name of the scientific

instrument required by the parallel;

if r3 = "primary-duration" r3(p) returns
number of seconds allotted to the

primary during which parallel science
may be conducted;

if r4 = "primary-week" r4(p) returns the
week to which p has been scheduled.

To avoid ambiguity, properties that apply
to both primaries and parallels (e.g.,
"target" or "instrument") are represented
as two distinct properties Cprimary-
target," "parallel-instrument"). For
notation, assume that properties 1,2 ..... h
apply to primaries, and properties h+l,
h+2 ..... k apply to parallels, i.e., R = rl,
r2, ... rh, rh+l, rh+2 .... rk. Property
values either exist explicitly in the parallel
database (e.g., the primary or parallel
instrument), or are determined by the
Spike scheduler (e.g., the week to which
a primary has been scheduled).
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F = {fl,f2 ..... fn} is a set of evaluation
criteria or features upon which the
compatibility between a primary and a
parallel is assessed. Examples of features
for a primary p and a parallel q are:
"pointing" (the targets of P and Q must be
sufficiently close to one another),
"instruments" (p and q must not both
require the use of the same scientific
instrument), and "timing" (p and q match
best when they each require
approximately the same amount of
execution time). Note the distinction

between features and properties, i.e.,
properties are characteristics of a primary
or a parallel (e.g., the instrument used),
while features are characteristics of a

match (e.g., whether the instruments
used by the primary and the parallel are
the same). Property values are required
for the evaluation of features (see below).

The evaluation interval L = [LI, Lh] is a
sub-interval of the real numbers, where
LI < Lh. LI is the lower bound of L and
Lh is the upper bound. L is the range of
the scoring function, as well as the range
of some of the mappings used in the
knowledge base. In the POMS
knowledge base L = 10,1], although this
restriction need not hold in general.

The neutrality point LN • L indicates a
"neutral" value in the evaluation interval.

This reflects a "moderate" compatibility
score (i.e., not particularly compatible,
nor particularly incompatible). In POMS,
LN = 0.5.

The scoring function H : P x Q -> L
evaluates the compatibility of any primary
p with any parallel q. For all p, p'• P
and q, q'• Q, H(p, q) > H(p', q') iff
the match between p and q is considered
better than the match between p' and q'.
Since any p or q is described by
properties, we may consider the domain
of H to be vectors of property values,
i.e., H(p,q) = H(rl(p), r2(p) .... rh(p),
rh+l(q), ..., rk(q)).

The matching score for a primary p and a
parallel q is the value returned by the

scoring function H when applied to a
primary-parallel pair.

Feature evaluation is the assignment of a
value to a feature for a particular primary-
parallel pair. This assignment is an
expression of the compatibility between p
and q with respect to a single feature. For
example, if p and q both require the same
instrument, then the feature "instruments"

would evaluate to 0, indicating that the
pair is incompatible with respect to this
feature. If different instruments are

required, then "instruments" evaluates to
1 for the pair. For certain features,
intermediate values are possible. Some
features are qualitative, i.e., they are
either totally present or totally absent. For
example, the instruments used by p and q
either are or are not the same. The

absence of a single qualitative feature may
be sufficient to disqualify p and q from
simultaneous execution. Other features

are quantitative, i.e., they are exhibited to
varying degrees, possibly on a
continuous scale. The feature "timing",
for instance, is associated with a

goodness-of-fit measure, i.e., the closer
the timing requirements of p and q, the
better the match.

4. Matching Criteria

Currently, the POMS knowledge based
represents the effects of ten features. Five
features ("timing", "priority", "roll",
"mechanism-motion", "pcs-mode") are
quantitative, and the others
Cinstruments","pointing", "nssc-usage",
"permits-parallels", and "manual-match")
are qualitative.

"Timing" is the degree to which the
primary's time available for parallel
science matches the time required by the
parallel. The most compatible situation
occurs when p has slightly more time
available than is required by q. If p is
much longer than q, then the match is not
as good, since the extra time would be
better utilized in a match with a longer
parallel. If p is much shorter than the q,
then the primary and parallel are clearly
incompatible. Total incompatibility does
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not exist, however, when p is only
moderately shorter than q, since the
short-term schedulers may have reason to
delay the initiation of the next primary,
thereby permitting the parallel to finish.
"Timing" is a continuous feature that, in
general, assumes values intermediate to
the stereotyped situations described
above.

"Priority" is number indicating the
scientific importance of a parallel SU, as
determined by a peer review committee
and the Director of the STScI. The higher
the number, the higher the compatibility
of a parallel with any primary.

When both the primary and parallel have
fixed point targets (as opposed to target
regions -- see below), it is usually
necessary to roll the spacecraft (rotate it
about an axis parallel to its bore) in order
to bring both targets into the fields of
view of both instruments. "Roll" is the

number of degrees of spacecraft roll
required to do this. Since rolling the
spacecraft takes time, the greater the roll,
the lesser the compatibility.

The HST has a pointing control system
(PCS) that stabilizes the spacecraft during
observations. The PCS operates in three
different modes, depending on the degree
of stability required by the observation.
The more stable modes require
successively greater overhead time. The
policy has been adopted that no matches
are permitted between parallels whose
PCS requirements are more stringent than
the primaries, since the additional
overhead would delay the pre-scheduled
primary. The best case occurs when the
primary and parallel have the same PCS
requirement. Matches are permitted in
cases where p has a stricter requirement
than q, however this is less desirable than
the above case, since p's strict
requirement is "wasted" on a parallel that
doesn't really need it. The feature "pcs-
mode" reflects these considerations. If

p's PCS mode is greater than q's PCS
mode, than p and q are incompatible with
respect to "pcs-mode". Otherwise, the

greater the difference between the two
modes, the lower the compatibility.

The feature "instruments" expresses
whether or not the scientific instruments

required by p and q are a legal
combination for parallel science. Certain
instruments are currently precluded
entirely, however this is subject to
change. If the parallel instrument is
allowable and is not the same as the

primary instrument, then p and q are
totally compatible with respect to this
feature.

The feature "pointing" exhibits total
compatibility when the targets for p and q
are positioned sufficiently close to permit
parallel observations. Otherwise, p and q
are incompatible with respect to the
feature.

Some observations use instruments with

moving parts, which causes the HST to
vibrate slightly. Other observations
cannot tolerate such small vibrations.

Obviously, these two types cannot be
executed in parallel. The feature
"mechanism-motion" exhibits total

incompatibility in such cases, and total
compatibility otherwise.

An NSSC-I computer aboard the
spacecraft is used to store a variety of
temporary data. Since only one
instrument at a time may access the
computer, p and q are incompatible if
they both require its use. The feature
"nssc-usage" expresses this criterion.

There are numerous reasons why certain
primaries are excluded out of hand from
consideration for parallel science. In such
cases, the feature "permits-parallels"
exhibits total incompatibility.

By setting appropriate fields in the
parallel database, the scheduler is
permitted to force a match between a
particular p and q. In such cases, the
highest matching score is assigned to the
pair, thereby guaranteeing its delivery to
SPSS. In such cases, the feature



"manual-match" exhibits total

compatibility.

5. Knowledge representation

The POMS knowledge base contains
expertise about the semantics and
influences of matching criteria, encoded
via a structured set of expert-supplied
numerical mappings, or knowledge
functions. The knowledge functions
generate a network, whose traversal
implements the application of the
knowledge base to a candidate primary-
parallel pair. The output of the network is
a numerical score that estimates the

degree to which the primary and parallel
are compatible.

There are four types of knowledge
functions, each with a specific
representational task:

(1) measurement functions, which
quantify the degree to which a feature is
present in a primary-parallel pair;,

(2) intensity functions, which normalize

the degree of each feature's presence;

(3) compatibility functions, which
describe relationships between feature
intensity and the goodness of a match,
with respect to a single feature;

(4) an aggregation function, which
combines individual feature

compatibilities into an overall assessment
of the match.

A.pplication of the knowledge base to a
pnmary and a parallel is achieved via the
composition of the knowledge functions
in a prescribed manner. Figure 2 depicts
how this composition may be viewed as
a traversal of a network in which the arcs

are knowledge functions and the nodes

are function inputs/outputs. Processing of
the knowledge base corresponds to
traversal of the network from bottom to

top. The inputs to the network are
property values for a primary p and a
parallel q. The n measurement functions
accept these inputs and return n

measurement values. The intensity
functions accept the measurement values
and return n intensity values.
Compatibility functions accept intensity
values and return n compatibility values.
Finally, the compatibility values are
mapped into a single number H(p,q) at
the figure's top.

H(p, q)

values...l

11 12 ... intensity functions ...

._... measurement values

M2 ...measurement functions..

I Properties of p, q
rl(P),..., rh(P), r h+l(q), ..., r k(q)

Figure 2. Network model of scoring
function H for primary p and parallel q

5.1 Measurement functions

For each feature fj, there is a

measurement function Mi-: P x Q -o Sj
where Sjis the (feature-dependent) range
of Mj. M i is a procedure to measure fi.

The ihput_ to Mj are property values an'd
the output is a measurement value mi that
expresses (in feature-dependent unit_) the
presence of fi in a primary-parallel pair.
The measurement function for fi =
"instruments", for instance, returns "I_ or

NIL, depending on whether the
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instruments used by the primary and
parallelaredifferent or the same.As an
examplefor a quantitativefeature,Mj for
the feature fj = "timing" accepts two
inputs:tq, the lengthof time(in seconds)
requiredby theparallel for its execution,
and to, the number of seconds available
for p_allel science beginning with the
start of the primary, tp and tq are property

values stored in the pkrallels-database. Mj
returns a measurement value mj = tp - tq,
i.e., the difference between the length of
time available and the length of time
required for a primary-parallel pair.

In certain cases, the measurement

function involves more complicated
calculations, e.g., the measurement
function for the feature "roll" might
compute the number of degrees of roll
required by the spacecraft to bring both
targets into view. The criteria and
methods used for measuring features are
chosen by the domain expert.

5.2 Intensity functions

For each feature fj, there is an intensity
function I'" S' _ L, where S is theJ" J .J
range of the measurement function M.j. Ij
normalizes the measurement value mj into
a uniform scale. In POMS, intensity
functions are defined as sets of points
provided by the domain expert. For
qualitative features, the mapping is
frequently trivial, i.e., the measurement
value is either 0 (signifying total absence

of fj) or 1 (signifying total presence). For
example, if fj = "instruments" (as
described in the previous section), Ii
simply maps Sj = {T, NIL] into {0,1l
(Table 1). For quantitative features that
assume continuous values, the ordered

pairs generate a piecewise linear function
where additional points may be defined to
arbitrarily fine gradation at the discretion
of the domain expert. In such cases, a
"neutral" intensity value ij = 0.5 indicates
moderate presence of fj_ For example,
intensity for the feature fj = "timing",
refers to the degree to which the time

available exceeds the time required, i.e.,
if p is a very short primary SU and q is a

very long parallel SU, then the feature
timing is considered to be weakly present
in the pair. Conversely, "timing" is
strongly evidenced when a very long
primary is matched with a very short
parallel, and the feature is neutral when
the time available is equal to the time
required. This behavior is represented in

a table of ordered pairs defining Ij (Table
2). Domain values not explicitly
represented in the table are derived by

linear interpolation.. (e...g, I'(200)j . = 0.40). .
Since hnear interpolation reqmres fimte
values, the infinite values at the extremes
must be compromised by finite
approximations -- in this case 100,000
and -100,000 -- beyond which the
function value will not change. The
particular data points chosen by the expert
are somewhat arbitrary and represent an
approximation to the expert's
interpretation of the feature's semantics.

Note that intensity is a function only of
the feature, not the goodness of a match,
i.e., high intensity does not necessarily
imply that the primary and parallel are
well-matched with respect to the feature.
For example, neutral intensity for
"timing" (i.e., a situation where the
primary and parallel have the same timing
requirements) is a more compatible
situation than high intensity (i.e., a
situation where the time available from

the primary greatly exceeds the time

required by the parallel). This is
illustrated in the following section.

Table 1. Intensity function for feature
fi = "instruments"

I

mi ] ii =Ii_mi)

NIL 0.0

T 1.0



Table 2. Intensity function for feature

fj = "timin

mj

-OO

- 100,000 0.00

- 10,000 0.03

- 1,000 0.20

-400 0.30

0 0.50

400 0.70

1,000 0.80

10,000 0.97

100,000 1.00

+_ 1.00

5.3 Compatibility functions

For each feature fj, there is a

compatibility function Cj:L _ L. Cj
represents the compatibility between a
pnmary and a parallel with respect only to
feature fj as a function of the feature's
intensity.'The input to Cj is the intensity

value i'j.The compafibilit3/value c'j = C'(i:l')
represents the goodness of the matc_

between p and q with respect to fj. Like
intensity functions, compatibility
functions are represented as sets of
ordered pairs. Table 3 shows the

definition of Cj for the feature fi =
"instruments". When the feature is absent

in the primary-parallel pair (i.e., ij = 0,
denoting that the pair uses the same
instrument), the pair is incompatible with
respect to "instruments". If the feature is

present with maximum intensity (i.e., ij

= 1.0, denoting that p and q use different
instruments), then the pair is judged to be
totally compatible (cj = 1.0) with respect
to the feature. Table 4 shows a more

complicated compatibility function for the
quantitative feature "timing".

Table 3. Compatibility function for

feature fJ = "instruments"

c i = Ci(i i)

0.0

1.0 1.0

Table 4. Compatibility function for

feature fi = "timing"

ii

0.0

c[ = Cj(ii)

0.0

0.4 0.3

0.5 0.45

0.55 0.5

0.6 0.7

0.8 0.5

0.9 0.42

1.0 0.25

Here Cj encodes the belief that the
optimal compatibility (0.7) is achieved
when the intensity is moderately high
(0.6). This reflects a situation where the

time available is greater, but not too much
greater, than the time required.
Compatibility declines for higher values
because the extra time available would be

wasted (and used better with a longer
parallel). Situations where the time
available is less than the time required are
not considered incompatible because
SPSS may choose to delay the initiation
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of the next primary, in which case the

parallel may continue to completion. The
compatibility declines sharply as the
negative timing disparity increases,
however.

The precise values chosen by the expert
to define quantitative compatibility
functions are not arbitrary. The method
for defining these mappings is described
in section 7.

5.4 Aggregation function

The knowledge base contains a single

aggregation function A : L n --, L whose
purpose is to combine the compatibility
values Cl, c2 ..... Cn into an overall
matching score for a primary-parallel
pair. The aggregation function is not a
predetermined formula, but rather it is
defined by the expert as an explicit part of
the knowledge base. It depends on the
evaluation features, and may be changed

at the expert's discretion. To capture the
particular semantics of different features,
the aggregation function is built up from
operators called aggregation primitives,
MIN, MAX and a. The primitive
operators reflect three different modes of
aggregation between features.

For simplicity, we describe each primitive
as a binary operator, but since all three
are associative and commutative, they
may generalized in a straightforward
manner to n-ary functions whose
arguments may be evaluated in any order.
Each primitive accepts two compatibility
values ci and c" as arguments and returnsJ
a value equal to the aggregate effect of ci

and cj. The semantics of the three
operators are shown in Table 5. MIN
simply returns the minimum of ci and cj,
while MAX returns the maximum. MIN

and MAX represent cases where the
compatibility of either feature always
dominates the aggregation, e.g., if ci <

, then MIN(ci, c i) = ci. regardless of
e precise value of c i, i.e., no tradeoffs

are exhibited, ot is-used to express
tradeoffs and compensations, i.e., neither
feature dominates and the aggregate effect

depends on the precise level of each
feature.

An example of MIN occurs between the
qualitative features fi = "instruments" and

= "permits-parallels". If a candidate
mary-parallel pair is incompatible with

respect to instruments, (i.e., ci = 0) then
the aggregate effect is always
incompatible, whether or not the primary
permits parallel science. Similarly, if
parallel science is not permitted on the
primary (i.e., ci = 0), then the aggregate
effect is always incompatible, whether or
not the instruments are compatible. These

semantics are captured by MIN(ci, cj!.
Note that for qualitative features, MIN is
equivalent to the logical conjunction (i.e.,
overall compatibility requires individual
compatibility from both features), hence
this mode of aggregation is called
conjunctive.

An example of MAX occurs between fi =

"instruments" and fj = "manual-match".
Since "manual-match" overrides all other

features, if a user requests a manual
match between a primary-parallel pair
(i.e., cj = 1), then the aggregate effect is
always totally compatible, regardless of
"instruments" compatibility. (Obviously,
this feature assumes some special
knowledge on the part of the user, and is

not to be used carelessly.) These
semantics are captured by MAX(ci, c i).
Note that for qualitative features, MAX-is
equivalent to the logical disjunction (i.e.,
compatibility from either feature implies
aggregate compatibility), hence this mode
of aggregation is called disjunctive.

An example of ¢t occurs between the
features "timing" and "priority".
Regardless of how compatible the
candidate pair is with respect to timing,
the aggregate effect may be raised
(lowered) by the influence of a high (low)
priority. The influence of "priority" is
similarly modified by the effect of timing
compatibility. A significant property of ot
is that neutral compatibility in either

feature has no effect on the aggregation,

i.e., 0t(cj, LN) = (x(LN, cj) for all cj. This
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mode of feature interaction is called

compensatory.

The formula used to model these

semantics depends on the choice of the
evaluation interval L and the neutrality
point LN. In POMS (L = [0,1] and LN --
0.5), we use a : L _ L defined as

cicj
a(ci,cj)- cicj + (1-ci) (1-cj)

ot is a special case of a symmetric sums
operator [Si179]. Its properties are
discussed in [Luc90]. This definition for
a is not unique, i.e., other formulas
might yield qualitatively similar results.
See [Che88] for a formal mathematical
treatment of related families of

aggregation operators. Note that a creates
a zero-divide condition when one of the

inputs is 0 and the other is 1. To avoid
this possibility, compatibility functions
that return a value of 1 for any finite
measurement value are not allowed for
compensatory features. This restriction
reflects an assumption that no single
compensatory feature is sufficient to
dominate the matching process.

The aggregation primitives constitute a
simple language for expressing complex
interactions among multiple features. In
principle, additional operators may be
added to the language, although MIN,
MAX, and a have thus far sufficed.

Table 5. Behavior of aggregation
_dmitives

ci c i MAX MIN a

high high high high very high

high low high low moderate

low high high low moderate

low low low low very low

The aggregation function A is defined as
a composition of aggregation primitives.

This process may be visualized as a parse
tree in which the leaves are compatibility
values and the internal nodes are

aggregation primitives. Figure 3 is an
example of an aggregation parse tree for
the features fl = "manual-match", f2 =
"permits-pars", f3 = "priority" and f4 =
"timing". Here A = max(cl, (min (c2,

a(c3, c4)))). The aggregate effect of
"priority" and "timing" is compensatory,
and their combined effect is conjunctive
with "permits-parallels". Finally, the
aggregate effect of the three lower
features is disjunctive with "manual-
match". For example, if:

(1) a manual match is not requested
(i.e., Cl = 0);

(2) the primary permits parallel
science (i.e., c2 = 1);

(3) the parallel has been assigned a
high priority (e.g., c3 = 0.8);

(4) the timing compatibility is fairly
low (e.g., C4 = 0.3);

then the matching score for a candidate
pair displaying these features is
MAX(0, MIN(1, a(0.8, 0.3))) = 0.63.

Figure 3. Example of aggregation
function parse tree. A(ct, c2, c3, c4) =
0.63
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Thefull aggregationfunction (expressed
in then-ary format)currentlyusedin the
POMSknowledgebaseis:

MAX(cl0, MIN (c6,c7,c8,c9,(X(Cl,c2,
c3,c4,c5))),

where Cl = "timing", c2 = "priority", c3 =
"roll", c4 = "mechanism-motion", c5 =
"pcs-mode", c6 = "instruments", c7 =
"pointing", c8 = "nssc-usage", c9 =
"permits-parallels" and Cl0 = "manual-
match". This formula reflects that (1) c 1

through c5 are compensatory with respect
to one another; (2) c6 through c9 and the
aggregate of Cl through c5 are mutually
conjunctive; and (3) clo is disjunctive
with all other features.

6. Explanation

Upon request, the matcher generates
tables that explain its assessments. Each
table summarizes the reasoning that went
into the matcher's analysis of the
compatibility between a particular
primary-parallel pair. An example
(reformatted) is shown in Table 6. The
header of the table contains the unique
SU identification numbers for p and q,
and the matching score. In this case, the
score of 0.565 indicates that p and q are
moderately compatible.

Each row in the table corresponds to the
evaluation of a particular feature. The first
column contains the feature's name. The
second and third columns contain relevant

property values for the primary and the
parallel, respectively. The primary
column in row 1, for example, shows the
number of seconds available for parallel

science for p (9700), and the parallel
column shows the time required by q
(700 seconds). For legibility, the name of
the property and the units of measurement
are not listed in the table, but they are
understood by schedulers who are
familiar with POMS.

Columns 4, 5 and 6 contain the

measurement, intensity and compatibility
values, respectively, for each feature.
Recalling the "timing" measurement

function (Section 5.1), the measurement
value in row 1 is the difference between

the time available (column 2) and the time
required (column 3), or 9000 seconds.
By Table 2, this yields an intensity value
of 0.95, indicating that there is quite a lot
of excess time available. POMS

recognizes (via the "timing" compatibility
function, Table 4) that this large excess
is undesirable and assigns a low "timing"
compatibility value (0.33) to the primary-
parallel pair.

Table 6. of match assessment

Primary 0091401 Parallel 0091505 Score -- 0.556

Featu(e Primar_ Parallel Mea Int Corn

tim,n 8 9700 700 9000 0.95 0.33

priority - 3.8 3.8 0.70 0.62

roll 131.4 0_ 360 0 0.0 0.50
mech-

motion Yr Y N_ Y 1 0.75 0.53

pcs-
mtxle fine fine 0 1.0 0.58

instru-
ments WFPC FOC T 1.0 1.0

2.0, 6.0 r,9.0,5.0 T 1.0 1.0

pointinlg 8.0,2.0
nssc-

usage N N N 0.0 1.0

permits-
parallels y - T 1.0 1.0
manual-

match - - N 0.0 0.0

For the next feature, "priority", the only
significant property is the scientific
priority of the parallel, 3.8. No primary
properties are relevant, hence the primary
column for "priority" is blank. The
measurement function for "priority"
simply returns the priority property value,
hence it is also equal to 3.8. Priorities are
assigned on a scale of 1 to 5, hence 3.8
is considered to be a fairly important
observation, i.e., the intensity value for
"priority" is high (0.70). This high
intensity is viewed by POMS as having a
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fairly strong positive influence
(compatibilityvalue = 0.62).

The primary column for "roll" contains
the orientation of the spacecraft (in
degrees, relative to an HST-specific
coordinatesystem) that is intendedfor
observingp. In this case,this so=called
"nominal orientation" is equal to 131.4
degrees.Theparallelcolumncontainsan
orientation interval that is sufficient to
view both theprimaryandtheparallel.In
thiscase,theinterval includesall possible
orientations,i.e., 0 to 360degrees.(Any
orientation is sufficient because the
parallelhasa region target that contains
the primary target. See "pointing",
below). The roll measurement function

computes the minimum number of
degrees that the spacecraft must rotate
from the nominal orientation, in order to
reach the desired interval. In this case, the
nominal orientation is within the desired

range already, hence no roll is required.
This fact is recorded in the "roll"

measurement value (0 degrees). For
"roll", this minimal intensity implies
neutral compatibility, i.e., the feature will
have no effect on the overall assessment

(compatibility value = 0.5).

The primary column for "mechanism-
motion" refers to two properties: (1)
whether or not the primary requires
mechanism motion ("Y indicates motion

is required); and (2) whether or not the
primary can tolerate motion ("Y" means
"yes"). The same scheme is used for the
q, hence the parallel column for
"mechanism-motion" indicates that the

parallel can tolerate motion, but does not
require it. The measurement function for
"mechanism motion" recognizes this
situation and returns a tag value of 1 to
the measurement value. (The simple
tagging scheme for measuring this feature
and its related intensity function are not
described here.) This combination of
motion requirements is considered to be
mildly favorable, hence a slight positive
compatibility value (0.53) is assigned.

Both p and q require the strictest PCS
mode. This is a favorable situation, hence

"pcs-mode" exhibits a compatibility value
of 0.58.

The remaining features are qualitative, p
and q use different instruments (the wide-
field planetary camera (WFPC) and the
faint object camera (FOC)). Neither uses
the NSCC-1 computer, while the primary
permits parallel observations, and no
manual match has been specified. Hence,
the conjunctive features "instruments",
"nssc-usage" and "permits-parallels" each
exhibit maximal compatibility, and the
disjunctive feature "manual-match"
exhibits minimal compatibility.

The primary column for the feature
"pointing" contains the celestial
coordinates (2.0 degrees longitude, 6.0
degrees latitude) of the primary target.
The parallel properties indicate that q has
a region target, i.e., a region of space in
which any specific pointing is sufficient.
(Region targets are quite common for
parallels.) The parallel column describes
this region as a rectangular area ("r")
centered at 9.0 longitude and 5.0 latitude,
with a longitudinal extent 10.0 degrees
from center, and a latitudinal extent 2.0

degrees from center. Since the primary
pointing is contained well within the
parallel's target region, p and q are
compatible with respect to pointing. (This
also explains why any orientation of the
spacecraft is acceptable.)

Application of the POMS aggregation
function (Section 5.4) yields a slightly
positive matching score of 0.556, despite
the poor time-fit. POMS has concluded
that the timing problem is outweighed by

the combined positive influences a high
scientific priority, favorable mechanism
motion and pointing control
requirements.

7. Knowledge acquisition

In this section, we describe the methods

used in POMS for acquiring new
expertise and for modifying an existing
knowledge base.
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7.1 Adding new knowledge

The process of acquiring new knowledge
in POMS is relatively structured,
compared to conventional knowledge-
based systems where acquisition usually
requires informal (and often lengthy)
dialogs between the domain expert and
the knowledge engineer. New knowledge
in POMS always comes in the form of a
new feature to be added to the assessment

process. Support for the new feature
requires the expert to provide definitions
for the new measurement, intensity and

compatibility functions, and to extend the
existing aggregation function to include
the new feature. To illustrate this process,
assume that a new feature fn+l is being
added to a knowledge base containing fl,
f2 ..... fn.

First, the domain expert selects a name
for fn+l, decides on a procedure for
measuring the new feature, and
determines what SU properties are
required for the analysis. The knowledge
engineer then implements the procedure
in CLOS. A pointer to this code is added
to the knowledge base so that it is
invoked whenever the new measurement

function Mn+l is applied.

For the intensity function In+l, the expert

provides a set of ordered pairs as in
Section 5.2. For qualitative features, this
is straightforward. For quantitative
features, the function should reflect the

expert's intuitive understanding of the
feature's semantics.

Extension of the aggregation function A
to incorporate fn÷l requires the addition
of a new branch and leaf (and possibly a
new internal node) to the existing parse

tree for A. The expert is requested to
identify the modes of interaction between
the new and existing features. Based on
this analysis, the placement for the new
leaf cn+t is identified. (For difficult
cases, this ad hoc extension technique

may be assisted by a partially mechanical
procedure [Luc90].) The engineer then
makes a corresponding change in the

formula that implements the aggregation
function in the knowledge base.

To elicit a new compatibility function
Cn+l for fn÷l, a context is constructed in
which the levels of the existing features
are constrained such that the new

feature's effect completely dominates the
aggregate compatibility of fl,f2 ..... fn÷l-
Under these assumed constraints, A(cl,

c2 .... Cn, Cn+l) is exactly equal to Cn+l =
Cn+l(in+l), for all in+l (see below).
Hence, in the assumed context, A =

Cn+l. To illustrate such a context, we
consider the case where all features are

compensatory, i.e., where
A(cl,c2 ..... Cn+l) = a(Cl,C2 ..... Cn÷l). In
this case, the desired context is achieved

by assuming that the aggregate effect of
fl,f2 ..... fn is neutral, i.e., A(ct,c2 ..... Cn)
= 0t(Cl,C2 ..... Cn+l) = LN. Under this
assumption, A(cl,c2 ..... Cn+l) = Cn+l =
Cn+l(in+l), for all intensity values in+l,
i.e., the aggregate compatibility of
fl,f2 ..... fn+l is completely dominated by
fn+l. This equality, which is easy to
verify formally, is consistent with the
intuitive interpretation that neutral
compatibility has a neutral aggregative
effect among compensatory features.

Once the context has been established, the

expert is then asked to estimate the
matching score for various selected
intensity values in+l, with the other
features fixed at their assumed levels.

Since A = Cn+l, each matching score is

equivalent to a compatibility value Cn+l.
Hence, each <in÷l, matching score> pair

is equivalent to a <in+l, Cn+l> pair. The
set of such pairs becomes the new
compatibility function Cn+l.

The rationale for the above strategy is that

it yields the expert's opinion of the
direction and degree to which the new
feature displaces the neutral effects of the
other features. This "strength of

displacement" is the essential heuristic
used to estimate a feature's significance to

the overall aggregation.

Consider a simple case in which
f2="priority" is being added to the
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existing knowledge base which contains
the single feature fl = "timing". The
aggregation function is A(cl,c2)=
a(Cl,C2) and the context contains the

assumption that Cl = 0.5. The expert is
asked to score a match in which timing is
neutrally compatible, i.e., cl = 0.5 for
varying intensities of i2 for "priority". If
"priority" is present with minimum
intensity (i.e., i2 = 0, the lowest possible
priority), then the aggregate matching
score is very low, say 0.1. This
assessment states the expert's opinion
that very low priority significantly
degrades the neutral effect of "timing".
Some other feature might have a less
significant effect. At neutral intensity for
"priority" (i.e., i2 = 0.5), the matching
score might be 0.5, implying that a
moderate priority has neither a positive
nor negative effect on the matching score.
The highest priority (i.e., i2 = 1.0) might
create an aggregate score of 0.8,
representing the opinion that high priority
has a strong positive effect on
compatibility. The data pairs [(0, 0.1),
(0.5, 0.5), (1.0, 0.8)] are included in the
new compatibility function C2. Additional
points may be provided to whatever
granularity is deemed necessary by the
domain expert.

The assumed context of aggregate
neutrality described above is appropriate
only if all features are compensatory.
Different assumptions are required for
non-compensatory features. If fl,
f2 ..... fn is conjunctive with respect to
fn+l, then the aggregate effect of
fl,f2 ..... fn is assumed to be totally
compatible (i.e., A(Cl,C2 ..... Cn) = 1.0).
In this case, A(cl,c2 ..... Cn+l) =
MIN(A(cl,c2,...,cn), Cn+l) = MIN(1.0,
Cn+l) = Cn+l. Hence, the aggregate effect
of fl,f2 ..... fn+l is dominated by fn+l, as
desired. In this case, the matching scores
provided by the expert represent the new
feature's strength to displace the total
compatibility of fl ..... fn.

Disjunctive features are handled by

assuming that fl,...fn are present with
minimal compatibility, and the matching
score represents the new feature's

strength in displacing the minimal
compatibility of fl ..... fn.

In the general case, where all three modes
of interaction may be present in fl .... fn,
the context requires all three forms of
assumptions. For example, suppose that
the feature f4 = "timing" is added to an
existing knowledge base containing fl =
"manual-match", f2 = "permits-parallels"
and f3 ="priority". The modes of
interaction among these features is shown
in Figure 4. The context for defining C4
consists of the following assumptions:

(1) f3 exhibits neutral compatibility (the
parallel has moderate priority, i.e., c3
= 0.5);

(2) f2 exhibits total compatibility (the
primary permits parallel science, i.e.,
c2 = 1);

(3) fl exhibits total incompatibility (a
manual match is not requested, i.e.,
cl = 0).

It is easily verified that under these
assumptions A(c1,c2,c3,c4) = C4(i4),
hence by describing the overall
compatibility with variances in the
intensity of f4, the expert expresses a
compatibility function for f4.

The method described above is a heuristic

for approximating compatibility
functions. The degree to which the
defined function actually represents the
true effects of a feature depends on how
closely the feature's general behavior is
modeled by its behavior under the
assumed constraints. In certain cases,

more restrictive assumptions (such as
assigning specific measurement values to
certain features) are necessary in order for
the context to make sense to the domain

expert [Luc90]. Other heuristics are
possible, but in practice the above
strategy has worked satisfactorily.

7.2 Changing existing knowledge

Any of the existing knowledge functions

may be modified incrementally. Most
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commonly, changes are made to
compatibility functions in order to fine-
tune the relative effects of features.

Suppose, for example, that the scheduler,
upon review of many matches, decides
that POMS is underscoring matches in
which p has a large excess of time
available for parallel science (as in the
example of Section 6). This deficiency is
easily addressed by dampening the
negative values defined for such cases in
the "timing" compatibility function. For
instance, the last entry in the function
definition (Table 4) might be adjusted
from (1.0, 0.25) to (1.0, 0.30), thereby
lessening the worst case effect of the
feature. The second-from-last entry might
also be modified slightly from (0.9, 0.42)
to (0.9, 0.45). Using this modified
compatibility function for "timing", the
example in Section 6 would yield a
matching score of 0.602, somewhat
higher than the original score of 0.556.
Changes to intensity functions (reflecting
a reassessment of a feature's semantics)
are made in a similar manner.

Currently, such changes are made by
manually editing a file that contains the
knowledge base, although an interface is
planned that will permit such changes to
be made interactively by the scheduler.

Changes in the way features are believed
to interact are made by rewriting the
aggregation formula in the knowledge
base file. Changes to a feature's
measurement function usually involves
the recoding of the CLOS procedure that
implements it. This requires intervention
by Spike system developers.

Features may be deleted from the
knowledge base simply by removal from
the argument list of the aggregation
function.

8. Results

Since the HST parallel science program is
still in the early testing stage, it is too
early to make conclusive statements about
the performance of POMS. Currently the
system has been used successfully to

verify matches made by human
schedulers. POMS has also been

employed to analyze the frequency of
good matches in a large pool of proposals
to be executed in 1992. Although much
improvement is required before POMS
can assume a more autonomous role in

scheduling, the system's rate of
improvement has been highly
encouraging thus far.

The most apparent strength of the system
in this early phase (during which it has
been subjected to frequent changes in the
matching criteria) has been its capability
for incremental refinement. The

explanation facility has been quite useful
in identifying assessment errors and
these errors have, in most cases, been
easily corrected by adjusting a
compatibility function. Furthermore, the
corrections have, in almost all cases, been

made without destroying the prior
integrity of the knowledge base, i.e.,
without invalidating previously correct
assessments. This same amenability to
local refinement was also observed in the

previous application of the technique
I9,101 and seems to be a generic
advantage of the approach. As the human
knowledge sources for POMS become
more familiar with the parallel science
problem, we expect that POMS will .be
able to represent and use this expertise in
an accurate fashion.

There is no particular dependence
between the POMS methodology and the
parallel science problem. Hence, if
successful in the present arena, the
knowledge representation scheme should
be applicable to other problems involving
the assessment of multiple quantitative
criteria. We are currently investigating
several potential applications, including
the detection of duplicate scientific
requests in the ttST proposal pool, and
the matching of scientific observations to
point spread functions for image
restoration.
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